
1

Lunch With Friends: Complete Documentation

By: Amanda Zhang, Amir Hegazy, Brenna Chen, Jaemyung Choi, Soumika Guduru

2

Table of Contents

Project Proposal 3

Technical Specifications 4

Detailed Design Document 6

Task Breakdown 6

GUI Mockup 7

Database Schema 8

Class Details 9

Testing Document 13

Deployment Document / Instructions on How to Run 16

3

Project Proposal

For our final project, we plan on implementing a web application called Lunch with

Friends that is similar to Tinder but matches users to certain events and restaurants they would

like to visit. The main purpose of the app is for users to express their interest in visiting a certain

restaurant or event and then be matched with other users with the same preferences. This way,

users can meet other individuals interested in trying out a particular restaurant or going to a

certain event. In terms of location, we will be focusing on restaurants and locations within range

of USC to narrow our scope.

For the assignment specifications, authenticated users will be able to view other users and

mark their interest in locations. Guests will be able to view different locations but will not be

able to mark their interest or be matched with other users. Network functionality and

multithreading will come into play when 1) matching users to each other based on profile and

location and 2) as the number of users interested in a certain restaurant/event is updated globally

for other users to see.

Some other miscellaneous features include a visual indicator for users who have

responded yes and an expiration date/time for suggested connections. We will also allow for user

profile pictures, general user location information, friending features, and privacy functions if

users wish to remain anonymous to guests similarly to other popular social media platforms. In

terms of gathering information on the restaurants and event locations, we expect to use Yelp or

Google API.

4

Technical Specifications

Front-end

● Landing page

● Create login screen button and pop-up

○ Create Account / Log In / Browse as Guest

■ Username, password, profile pic

■ Enter user bio, interests, etc.

■ Prevent duplicate accounts

○ Location tracking accept button (if enough time)

● Create main screen (mimics Yelp)

○ Map on right

○ Settings / Account / Chat buttons top right

■ Settings features

● Change name/email/password/location

● Log out

○ Search bar top center

■ Displays list of near-by restaurants based on search - connects to back-end

■ Also displays how many people are interested in going to the restaurant

(updated live/globally)

○ Notifications on left side - matchings made (Yes / No options)

● Connect to back-end using Spring framework

Back-end

● Get list of restaurants based on search result

○ Yelp API call

● Create map with pins on different restaurants nearby using restaurant locations

■ Google Maps API

■ Google Geolocation API

■ Google Geocoding API

● Figure out log-in functionality

○ Central server to authenticate

○ Database for user registration information

5

● User suggestions

○ Group option and single option

○ Groups get access to a group chat to plan on visiting a certain restaurant together

○ Single users get suggested other user profiles, can say yes or no

● Chat feature for people who are suggested to each other

○ Group chat option as well

● Profile Info

○ Location data

○ Store info using spring mvc form handler

○ Groups of two or more preferred?

○ Name + Profile Pic

○ Bio/interests

● Multithreading

○ While chatting + ? - update # of people waiting to be matched for restaurants in

the background - multithreading?

○ Apache Tomcat

○ JSP + servlets

○ Synchronized Java Collections

● Networking

○ Matching users to each other simultaneously

○ Apache Tomcat

○ Server Endpoint + Servlets

Resources:

- Yelp API:

- https://rapidapi.com/blog/yelp-fusion-api-profile-pull-local-business-data/

- Google Maps API:

- https://developers.google.com/maps/documentation/geocoding/overview?hl=en

- https://developers.google.com/maps/documentation/maps-static/overview?hl=iw

&csw=1

https://rapidapi.com/blog/yelp-fusion-api-profile-pull-local-business-data/
https://developers.google.com/maps/documentation/geocoding/overview?hl=en
https://developers.google.com/maps/documentation/maps-static/overview?hl=iw&csw=1
https://developers.google.com/maps/documentation/maps-static/overview?hl=iw&csw=1

6

Detailed Design Document

Overview:

● Hardware

○ PC / Laptop

● Software

○ Eclipse, VSCode, etc. for programmers to write the code

○ MySQL to store user and event data

● Languages

○ Java to communicate with the SQL server

○ SQL to write instructions for the MySQL server

○ HTML, CSS, Javascript, and JSP for the front-end

Task Breakdown

Amanda, Brenna - display experience, restaurant data storage, connecting to servlets

Amir, Jaemyung - matching/chat features, communication between parts

Mika - user login/data storage, differentiate registered/non-registered users

● User Interface & Front-end (30 hours)

○ Landing/search page

○ Restaurants page

○ Map

○ Login with Google API, also integration with back-end and database info (8

hours)

○ Guest functionality is limited to just searching restaurants

● Back-end Logic in Java (40 hours)

○ Implement function for matching users

○ Implement function for searching restaurants

■ Parsing JSON from Yelp API

○ Integration from back-end to front-end to send notifications to users (5 hours)

○ Chat feature, also integrates with front-end (8 hours)

● Database (30 hours)

○ Stores users and basic user info

7

○ Stores restaurants and interested users

○ Pipeline to access database info from front-end or back-end (5 hours)

GUI Mockup

Clarifications:

● Colored areas are clickable buttons. Notifications button will likely show that the user has

been matched with someone.

● Guests will only be able to see the first two screens, the landing/search page and the list

of restaurants (and probably a number or rating of how popular the restaurant is). They

will not be able to have notifications, messages, or be able to express interest in a

restaurant. The second screen will be slightly different, depicted here:

8

○

● Login will be completely handled by Google API.

● Clicking the logo will direct the user back to the landing/search screen.

● Clicking the restaurant name will lead to an options page (depicted below) and then the

matches page.

○

Database Schema

Old:

Current:

9

Class Details

Class Data Members Methods Overview

User - string username

- string email: will

verify if email is

suitable through

Google API

- HashMap<Busine

ss, List<User>>

potentialMatches

- HashMap<Busine

ss, List<User>>

potentialInterested

Matches

- getters and setters for

each var

- addToPotentialMatches(

User newUser)

- addToPotentialInterested

Matches(User otherUser)

- May open chat

window if User is

also in otherUser’s

potentialInterestedM

atches

Contains basic information of

user

HashMap potentialMatches

links each list of possible

matches (Y/N option) to each

restaurant the User is interested

in

HashMap

potentialInterestedMatches

links the restaurant to each list

of users the User has said yes

to for that restaurant

- If the User is also in the

other user’s

potentialInterestedMatch

es for that restaurant,

opens a chat window

Login - Sign in with

Google

- Authenticate (username,

password): uses Google

sign-in to sign-in the user

- creates User upon

first login

Needed for login page -

authenticates user

- Database of users to

check for first time

logins

10

Business - Double rating

- String price

- Boolean is_closed

- String name

- String url

- Coordinates

coordinates

- Address location

- ArrayList<User>

interestedUsers;

- ArrayList<User>

groupUsers;

- Constructor

- Getter & setter

methods

- likesRestaurant(User,

boolean): adds User

to interestedUsers or

groupUsers

- hasDecidedOnRestau

rant(User): returns if

user has decided on

restaurant

Contains information for

business

- Contains ArrayList

interestedUsers, which

we’ll use to keep track

of all users that show

interested for the

restaurant who don’t

want a group

- Contains List

groupUsers, which we’ll

use to keep track of all

users who want a group

YelpAPIParser - List<Business>

getBusiness(String

term, Location

location): gets list of

businesses from Yelp

API

UserDBAccess - Long

serializeJavaObjectTo

DB(Connection

connection, Object

objectToSerialize)

- Object

deserializeJavaObject

FromDB(Connection

connection, long

serialized_id)

- Serializes and

deserializes Java

objects to/from

database

11

Clarifications:

● If a user chooses the group option, then they get access to a group chat of everyone else

who chose the group option (not split into smaller groups).

SearchRestaura

ntDisplay

JDBC_Access

JDBCUser_Ac

cess

businessDBAc

cess

DisplayInterest

edUsers

ChatServlet

 - doGet(HttpServletRe

quest request,

HttpServletResponse

response)

- Servlet

implementation

classes to access

database for

businesses & users &

chat

ChatRoomServ

er

- SynchronizedMap

<String,

Set<Session>>

- open(Session session,

String userID, String

room)

- receivedMessage(Stri

ng message, Session

session)

- connectionClosed(Ses

sion session)

- String

makeText(String

userID, String msg)

- Set<Session>

getChat(String

roomName)

- Creates chat room,

sends/receives

messages between

users

12

● Each user has a hashmap of the restaurants and the users they’d be interested in going

with. To check for matches, we have to check if the current user is on the other user’s

hashmap.

○ All users (matched or not) who are interested in the restaurant are located in the

ArrayList.

13

Testing Document

Log-in

1. Purpose of test: Makes sure account information is stored once a new email logs in

Input: User inputs email address, username, and password

Output: User is created, with correct info stored

2. Purpose of test: Check that logging in takes user to the correct account

Input: User inputs email address and password

Output: User is logged to their account

3. Purpose of test: Verify that there are no duplicate accounts

Input: Existing user logs in

Output: User only appears once in database

Yelp API & Google Maps API

1. Purpose of test: Makes sure list of restaurants is pulled from Yelp API

Input: N/A

Output: Restaurants successfully added to SQL database w/o duplicates

2. Purpose of test: List of restaurants changes based on coordinates

Input: Manually inputted coordinates

Output: Different restaurants added to database based on coordinates

3. Purpose of test: Makes sure Google Maps API displays map based on user location

Input: User location

Output: Map displayed centered on user’s location

Matching process (single)

1. Purpose of test: Makes sure there is no time when two mutually interested users are not

matched

Input: One user A says yes to user B who has already said yes to A

Output: Chat is created

2. Purpose of test: Makes sure no chat is created between non-mutually interested users

Input: One user A says yes to user B who has said no to B

Output: Chat is not created

Matching process (group)

14

1. Purpose of test: Check if newUser gets added to List<User> groupUsers in Restaurant

class

Input: newUser clicks Join → Group

Output: successful addition of newUser to List<User> groupUsers

2. Purpose of test: Check if newUser is added to the group chat

Input: newUser clicks Join → Group

Output: newUser added to chat

Database

1. Purpose of test: Businesses stored in database properly

Input: Business class

Output: MySQL server correctly receives and stores business

2. Purpose of test: Users stored in database correctly

Input: User class

Output: MySQL server correctly receives and stores users

3. Purpose of test: Businesses can be read from database properly

Input: Business class

Output: correct data/variables from Business (name, location, etc)

4. Purpose of test: Users can be read from database correctly

Input: User class

Output: correct User information

User

1. Purpose of test: Verify that User business interests are updated correctly

Input: User clicks interested for a business

Output: boolean isInterestedinBusiness returns true, User is added to list of users

2. Purpose of test:Verify that User decisions are accurately processed

 Input: User decides on a match for a certain restaurant

Output: hasDecidedOn returns the correct boolean

3. Purpose of test: Verify that Interested Users the User dislikes are removed from their

potential matches

Input: User selects no for an Interested User

Output: Interested User is removed from potentialMatches

15

4. Purpose of test: Verify that User’s preference for group or single is stored correctly

Input: User selects group or single for a particular restaurant

Output: The corresponding boolean in the HashMap groupOrSingle is updated

accordingly

Chat Room Server

1. Purpose of test: Verify that chatroom connects correct pair of users

Input: Match is made between two users

Output: Chatroom is created with the correct two users

2. Purpose of test: Verify that message is received by intended user when sent

Input: User sends message to match

Output: Match receives message

16

Deployment Document / Instructions on How to Run

1) Import the project into Eclipse

2) Right click Dynamic Web Project → Run Configurations → Tomcat

Environment: New Environment Variable

Name: GOOGLE_APPLICATION_CREDENTIALS

Value: Hardcoded - path to json file (Drag

“CSCI201-LunchWithFriends-7cac0ee5ef7f.json” file into terminal and copy statement into

value

3) With Apache Tomcat, launch the web application by running index.jsp on the server.

4) If it does not run:

1. Right click project “LunchWithFriends” then click properties

2. Java Build Path: Although the files should already be there, Make sure selected jars are

added in build path then Press “Apply” (to add press “Add Jar” on right side)

3. Web Deployment Assembly: Make sure selected jars are added in development assembly then

Press “Apply and Close”

17

4. Press “App

5. Right click project “LunchWithFriends” then hover over “run as” and then click “run

configurations” then “Classpath” and add the bottom three jars files with “Add jars” on the right

18

6. Extra step:

If server is unbounded Right click project “LunchWithFriends” then hover over “build

path” and then click “build path configurations” and edit the blue highlighted button. Selected

alternate JRE and click any of the ones from the dropdown..

7) run index.jsp !!!

