Lunch With Friends: Complete Documentation

By: Amanda Zhang, Amir Hegazy, Brenna Chen, Jaemyung Choi, Soumika Guduru

Table of Contents

Project Proposal 3
Technical Specifications 4
Detailed Design Document 6
Task Breakdown 6
GUI Mockup 7
Database Schema 8
Class Details 9
Testing Document 13

Deployment Document / Instructions on How to Run 16

Project Proposal

For our final project, we plan on implementing a web application called Lunch with
Friends that is similar to Tinder but matches users to certain events and restaurants they would
like to visit. The main purpose of the app is for users to express their interest in visiting a certain
restaurant or event and then be matched with other users with the same preferences. This way,
users can meet other individuals interested in trying out a particular restaurant or going to a
certain event. In terms of location, we will be focusing on restaurants and locations within range
of USC to narrow our scope.

For the assignment specifications, authenticated users will be able to view other users and
mark their interest in locations. Guests will be able to view different locations but will not be
able to mark their interest or be matched with other users. Network functionality and
multithreading will come into play when 1) matching users to each other based on profile and
location and 2) as the number of users interested in a certain restaurant/event is updated globally

for other users to see.

terms of gathering information on the restaurants and event locations, we expect to use Yelp or

Google APL

Technical Specifications

Front-end
e Landing page
e C(reate login sereermrbutton and pop-up

o Create Account / Log In / Browse as Guest

m Username, password, profitepte
m Prevent duplicate accounts
I)].] " et
e (Create main screen (mimics Yelp)

o Map on right

o Settings / Account / Chat buttons top right
m—Settingsfeatures
~ . Yoot
o—Logout
o Search bar top center

m Displays list of near-by restaurants based on search - connects to back-end

Back-end
o Get list of restaurants based on search result

o Yelp API call

e (Create map with pins on different restaurants nearby using restaurant locations

m Google Maps API
m Google Geolocation API
m Google Geocoding API
e Figure out log-in functionality
o Central server to authenticate

o Database for user registration information

e User suggestions
o Group option and single option
o Groups get access to a group chat to plan on visiting a certain restaurant together
o Single users get suggested other user profiles, can say yes or no
e (hat feature for people who are suggested to each other
o Group chat option as well
+—Profileinfo
e—TLocationdata
S o . orrrhamndl
o—Groupsof twoormorepreferred?
o—Name—+Profite Pre
e—DBto/mterests
e Multithreading

o Apache Tomcat

o JSP + servlets
o Synchronized Java Collections
e Networking
o Matching users to each other simultaneously
o Apache Tomcat
o Server Endpoint + Servlets
Resources:
- Yelp APL:
- https://rapidapi.com/blog/yelp-fusion-api-profile-pull-local-business-data/
- Google Maps API:

- https://developers.google.com/maps/documentation/geocoding/overview ?hl=en

- https://developers.google.com/maps/documentation/maps-static/overview ?hl=iw

&csw=1

https://rapidapi.com/blog/yelp-fusion-api-profile-pull-local-business-data/
https://developers.google.com/maps/documentation/geocoding/overview?hl=en
https://developers.google.com/maps/documentation/maps-static/overview?hl=iw&csw=1
https://developers.google.com/maps/documentation/maps-static/overview?hl=iw&csw=1

Detailed Design Document

Overview:

e Hardware
o PC/Laptop

e Software
o Eclipse, VSCode, etc. for programmers to write the code
o MySQL to store user and event data

e [anguages
o Java to communicate with the SQL server
o SQL to write instructions for the MySQL server
o HTML, CSS, Javascript, and JSP for the front-end

Task Breakdown
Amanda, Brenna - display experience, restaurant data storage, connecting to servlets
Amir, Jaemyung - matching/chat features, communication between parts
Mika - user login/data storage, differentiate registered/non-registered users
e User Interface & Front-end (30 hours)

e Back-end Logic in Java (40 hours)

e Database (30 hours)

o Stores restaurants and interested users

o Pipeline to access database info from front-end or back-end (5 hours)

GUI Mocku

Sign in Wil gergle

we (T O A

. Rustarcant |

A S— -

1. Restarrant |

(inch with fiods o @ ey T PhrAA
@ = st v
(=) = - @ fhane
@ L. tutavrant L L. tetavrant L
@ IR 2 X IR R
Addrd§ AddrJ T
mMeSsagel @ Noame Eestavrant |
Name alss wanh 7
@ Name f = = b wvisih hered
e eee—— Name alss wanh 7) X
@Nu-\(G— @ o wisit heee!
@ Fam Nm@ t.LU. lumh
(=) b visit hercd
"J‘O(:IEDQ,@ @ v DQ,@

| RuUtavrant | I Restasrant |
lonch with Priends o PhrAA T PAr AR
——— - Addrs s
: > |@ = v
@ L. tufavrant L L. tutavrant L
@ LR S A ﬁ RS RS ﬁ
Addd§ AkdT
@) s D
™ML agel @ Name Cestaurant |

=]

(=)

Name alsy wanh

fo wisit herel

Name alfy wanh
to

visit heee!

Name alss wanh
o visit weeed

Clarifications:

e (olored areas are clickable buttons. Notifications button will likely show that the user has

been matched with someone.

e Guests will only be able to see the first two screens, the landing/search page and the list

of restaurants (and probably a number or rating of how popular the restaurant is). They

will not be able to have notifications, messages, or be able to express interest in a

restaurant. The second screen will be slightly different, depicted here:

Lyr o (T

Q) [sign in witn gegle]

. Redtavrant |
PRRAA

Addg s
Phene

L. tutavrant L
IR X]

Phene

o

AMd s f
'

e [ogin will be completely handled by Google API.

e C(Clicking the logo will direct the user back to the landing/search screen.

matches page.

Rutawant |

(Cnoose an opfion

Clicking the restaurant name will lead to an options page (depicted below) and then the

Restaurants
name

A address

9ot J‘l'\jlc.
O
Database Schema
Users Interested Users
A email @ Restaurant
username i lisar
bio
Potential Matches
@, otherUser
Restaurant
trdrawS
Current:
Serialized Java Object
Serlds 5
&, Serld &, Serialized Id
7 Email

Object Name
Serialized Object

Serialized Java Restaurant
S
&, Serialized Id
Object Name
Serialized Object

Google

password): uses Google
sign-in to sign-in the user
- creates User upon

first login

Class Details
Class Data Members Methods Overview
User - string username - getters and setters for Contains basic information of
- string email: will each var user
verify if email is - addToPotentialMatches(
suitable through User newUser) HashMap potentialMatches
Google API - addToPotentiallnterested | links each list of possible
Matches(User otherUser) | matches (Y/N option) to each
- HashMap<Busine - May open chat restaurant the User is interested
ss, List<User>> window if User is in
potentialMatches also in otherUser’s
potentiallnterestedM | HashMap
- HashMap<Busine atches potentiallnterestedMatches
ss, List<User>> links the restaurant to each list
potentiallnterested of users the User has said yes
Matches to for that restaurant
- Ifthe User is also in the
other user’s
potentiallnterestedMatch
es for that restaurant,
opens a chat window
Login - Sign in with - Authenticate (username, Needed for login page -

authenticates user
- Database of users to
check for first time

logins

10

Business Double rating Constructor Contains information for
String price Getter & setter business
Boolean is_closed methods - Contains ArrayList
String name likesRestaurant(User, interestedUsers, which
String url boolean): adds User we’ll use to keep track
Coordinates to interestedUsers or of all users that show
coordinates groupUsers interested for the
Address location hasDecidedOnRestau restaurant who don’t
ArrayList<User> rant(User): returns if want a group
interestedUsers; user has decided on - Contains List
ArrayList<User> restaurant groupUsers, which we’ll
groupUsers; use to keep track of all
users who want a group
YelpAPIParser List<Business>
getBusiness(String
term, Location
location): gets list of
businesses from Yelp
API
UserDBAccess Long - Serializes and

serializeJavaObjectTo
DB(Connection
connection, Object
objectToSerialize)
Object
deserializeJavaObject
FromDB(Connection
connection, long

serialized id)

deserializes Java
objects to/from

database

11

SearchRestaura

ntDisplay

JDBC_Access

doGet(HttpServletRe
quest request,
HttpServletResponse

response)

Servlet
implementation
classes to access
database for

businesses & users &

JDBCUser Ac chat
cess
businessDBAc
cess
DisplayInterest
edUsers
ChatServlet
ChatRoomServ - SynchronizedMap open(Session session, Creates chat room,
er <String, String userID, String sends/receives
Set<Session>> room) messages between
receivedMessage(Stri users
ng message, Session
session)
connectionClosed(Ses
sion session)
String
makeText(String
userID, String msg)
Set<Session>
getChat(String
roomName)
Clarifications:

e If auser chooses the group option, then they get access to a group chat of everyone else

who chose the group option (not split into smaller groups).

Each user has a hashmap of the restaurants and the users they’d be interested in going
with. To check for matches, we have to check if the current user is on the other user’s
hashmap.

o All users (matched or not) who are interested in the restaurant are located in the

ArrayList.

12

Testing Document

Log-in
1. Purpose of test: Makes sure account information is stored once a new email logs in
Input: User inputs email address, username, and password
Output: User is created, with correct info stored
2. Purpose of test: Check that logging in takes user to the correct account
Input: User inputs email address and password
Output: User is logged to their account
3. Purpose of test: Verify that there are no duplicate accounts
Input: Existing user logs in
Output: User only appears once in database
Yelp API & Google Maps API
1. Purpose of test: Makes sure list of restaurants is pulled from Yelp API
Input: N/A
Output: Restaurants successfully added to SQL database w/o duplicates
2. Purpose of test: List of restaurants changes based on coordinates
Input: Manually inputted coordinates
Output: Different restaurants added to database based on coordinates
3. Purpose of test: Makes sure Google Maps API displays map based on user location
Input: User location
Output: Map displayed centered on user’s location
Matching process (single)
1. Purpose of test: Makes sure there is no time when two mutually interested users are not
matched
Input: One user A says yes to user B who has already said yes to A
Output: Chat is created
2. Purpose of test: Makes sure no chat is created between non-mutually interested users
Input: One user A says yes to user B who has said no to B
Output: Chat is not created
Matching process (group)

1.

Purpose of test: Check if newUser gets added to List<User> groupUsers in Restaurant
class

Input: newUser clicks Join — Group

Output: successful addition of newUser to List<User> groupUsers

Purpose of test: Check if newUser is added to the group chat

Input: newUser clicks Join — Group

Output: newUser added to chat

Database

1.

User

Purpose of test: Businesses stored in database properly

Input: Business class

Output: MySQL server correctly receives and stores business
Purpose of test: Users stored in database correctly

Input: User class

Output: MySQL server correctly receives and stores users
Purpose of test: Businesses can be read from database properly
Input: Business class

Output: correct data/variables from Business (name, location, etc)
Purpose of test: Users can be read from database correctly
Input: User class

Output: correct User information

Purpose of test: Verify that User business interests are updated correctly

Input: User clicks interested for a business

Output: boolean isInterestedinBusiness returns true, User is added to list of users
Purpose of test: Verify that User decisions are accurately processed

Input: User decides on a match for a certain restaurant

Output: hasDecidedOn returns the correct boolean

Purpose of test: Verify that Interested Users the User dislikes are removed from their
potential matches

Input: User selects no for an Interested User

Output: Interested User is removed from potentialMatches

14

15

4. Purpose of test: Verify that User’s preference for group or single is stored correctly

Input: User selects group or single for a particular restaurant
Output: The corresponding boolean in the HashMap groupOrSingle is updated

accordingly

Chat Room Server

1.

Purpose of test: Verify that chatroom connects correct pair of users

Input: Match is made between two users

Output: Chatroom is created with the correct two users

Purpose of test: Verify that message is received by intended user when sent
Input: User sends message to match

Output: Match receives message

16

Deployment Document / Instructions on How to Run

1) Import the project into Eclipse
2) Right click Dynamic Web Project — Run Configurations — Tomcat
Environment: New Environment Variable
Name: GOOGLE APPLICATION_ CREDENTIALS
Value: Hardcoded - path to json file (Drag
“CSCI201-LunchWithFriends-7cacOeeSef7f.json” file into terminal and copy statement into
value
3) With Apache Tomcat, launch the web application by running index.jsp on the server.
4) If it does not run:
1. Right click project “LunchWithFriends” then click properties
2. Java Build Path: Although the files should already be there, Make sure selected jars are
added in build path then Press “Apply” (to add press “Add Jar” on right side)

SOI_SFRTALTZF ORIFCT =
Properties for LunchWithFriends

Java Build Path
P Resource
Builders B Source = Projects -\ Libraries 44 Order and Export M Module Dependencies
Coverage .
Deployment Assembly JARs and class folders on the build path:
Java Build Path v %4 Modulepath
¥ Java Code Style » =\ JRE System Library [Java SE 14.0.1 [14.0.1]]
P Java Compiler ¥ 44 Classpath
Javadoc Location -

P @B google-api-client-1.30.2.jar - LunchWithFriends
» Java Editor B ducole et !

» JavaScript > @ google-http-client-1.38.0.jar - LunchWithFriends
JSP Fragment > g google-oauth-client-1.30.1.jar - LunchWithFriends
Project Facets » @ gson-2.8.6.jar - LunchWithFriends
Project Natures » @ httpclient-4.5.13 jar - LunchWithFriends
Project References » @ javax.json-api-1.0.jar - LunchWithFriends
Refactoring His{ory » @ mysql-connector-java-5.1.49.jar - LunchWithFriends
GRS > ﬁ mysqgl-socket-factory-1.0.15-jar-with-dependencies.jar - LunchWithFriends
gzzi"e i > & okhttp-3.9.0 jar - LunchWithFriends
Targeted Runtimes » @ okio-1.13.0.jar - LunchWithFriends
Task Repository > =\ Apache Tomcat v9.0 [Apache Tomcat v9.0]
Task Tags P =\ EAR Libraries
» Vaadin » =\ Web App Libraries
P Validation
Web Content Settings
Web Page Editor
Web Project Settings
WikiText
P XDoclet Apply

0 Cancel Apply and Close

3. Web Deployment Assembly: Make sure selected jars are added in development assembly then
Press “Apply and Close”

» Resource
Builders
Coverage
Deployment Assembly
Java Build Path

» Java Code Style

» Java Compiler
Javadoc Location

P Java Editor

» JavaScript
JSP Fragment
Project Facets
Project Natures
Project References
Refactoring History
Run/Debug Settings
Server
Service Policies
Targeted Runtimes
Task Repository
Task Tags

» Vaadin

» Validation
Web Content Settings
Web Page Editor
Web Project Settings
WikiText

» XDoclet

o

4. Press “App

Web Deployment Assembly

Define packaging structure for this Java EE Web Application project.

Source ~ |Deploy Path

WEB-INF/lib/google-api-client-1.30.2.jar
/LunchWithFriends/google-http-client-1.38.0.jar WEB-INF/lib/google-http-client-1.38.

@ /LunchWithFriends/google-oauth-client-1.30.1.jar i WEB-INF/lib/google-oauth-client-1.30.1.jar
WEB-INF/lib/gson-2.8.6.jar

@ WEB-INF/lib/httpclient-4.5.13.jar

WEB-INF/libfjavax.json-1.1.4.jar

/LunchWithFriends/mysgl-connector-java-5.1.49.jar WEB-INF/lib/mysgl-connector-java-5.1.49.jar

JLunchWithFriends/mysg|-socket-factory-1.0.15... WEB-INF/lib/mysgl-socket-factory-

& WEB-INF/lib/okhttp-3.9.0.jar

& WEB-INF/lib/okio-1.13.0.jar

M /src @ WEB-INF/classes

& /LunchWithFriends/google-api-client-1.30.2.jar

@ /LunchWithFriends/gson-2.8.6.jar
@ /LunchWithFriends/httpclient-4.5.13.jar
& /LunchWithFriends/javax.json-1.

@ /LunchWithFriends/okhttp-
/LunchWithFriends/okio-1.1

#® /WebContent -/

.15-jar-with-dependencies.jar

Revert Apply

Cancel Apply and Close

5. Right click project “LunchWithFriends” then hover over “run as” and then click “run

17

configurations” then “Classpath” and add the bottom three jars files with “Add jars” on the right

Run Configurations

Create, manage, and run configurations

@ [Server]: Server already running
Erel By

$:. Apache Felix
v B Apache Tomcat
B Tomcat ve.0 Server at locall
3 Debug Adapter Launcher
se Application
<e Data Tools
Equinox
B Generic Server
B Generic Server(External Launc!
Gradle Task
Gradle Test
B HTTP Preview
B J2EE Preview
i Java Applet
v 6 Java Application
5 Jdbclab10

ringTestingDriver
st

TestingDictionaryBK
stingDriver

U
¥ Junit Plug-in Test
Knopflerfish
& Launch Group
== Launch NPM
@A Maven Build
) Node js application

B PHP Built-in Server
{3 PHP CLI Application
i PHP Web Application
3 RAP Application
W@ RWT Application

> ¢ XSL

Filter matched 41 of 51 items

(]

Name: Tomcat v9.0 Server at localhost
| Arguments ¥4 Classpath

Classpath:

¥ %4 Bootstrap Entries
=\ JRE System Library [Java SE 14.0.1 [14.0.11]
¥ %4 User Entries
& bootstrap.jar - /us/local/Cellar/tomcat/9.0.37 /libexec/bin/
& tomcat-julijar - /usr/local/Cellar/tomcat/9.0.37/libexec/bin/
& CSCI201-LunchWithFriends-7cacOeeSef7f.json - /LunchWithFriends/
@ mysal-connector-java-5.1.49.jar - /LunchWithFriends/
& mysal-socket-factory-1.0.16-jar-with-dependencies.jar - /LunchWithFriends/

Restore Default Entries

Exclude test code

Use temporary JAR to specify classpath (to avoid classpath length limitations)

18

6. Extra step:
If server is unbounded Right click project “LunchWithFriends” then hover over “build
path” and then click “build path configurations™ and edit the blue highlighted button. Selected

alternate JRE and click any of the ones from the dropdown..

Properties for LunchWithFriends

Java Build Path

» Resource
Builders #i Source = Projects A Libraries 44 Order and Export f Module Dependencies
Coverage
Deployment Assembly
Java Build Path ¥ ¥4 Modulepath
> Java Code Style » =\ JRE System Library [Java SE 14.0.1 [14.0.1]]
St s
 Java Editor @ googlefapkcln?mf1.30.2.|efr - Lunctht_thPtnds
: google-http-client-1.38.0.jar - LunchWithFriends

» JavaScript
JSP Fragment ar - LunchWithFriends

Project Facets

Project Natures httpclient-4.5.13.jar - LunchWithFriends

Project References @ javax.json-api-1.0.jar - LunchWithFriends

Refactoring Hist.ory) mysql-connector-java-5.1.49.jar - LunchWithFriends

:::\‘:eD’ebug Seligs : mysql-socket-factory-1.0.15-jar-with-dependencies.jar - LunchWithFriends

Service Policies okhttp-3.9.0.jar - LunchWithFriends

Targeted Runtimes okio-1.13.0.jar - LunchWithFriends Edit...

Task Repository \ Apache Tomcat v9.0 [Apache Tomcat v9.0]
A\ EAR Libraries Remove
A\ Web App Libraries

JARs and class folders on the build path:

Web Content Settings
Web Page Editor

Web Project Settings
WikiText

XDoclet
Apply

0 Apply and Close

7) run index.jsp !!!

